Advertisements
Advertisements
Question
if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`
Solution
`= (a cos^3 theta + 3a cos theta sin^2 theta + a sin^3 theta + 3a cos^2 theta sin theta)^(3/2) + (a cos^3 theta + 3a cos theta sin^2 theta - a sin^3 theta - 3a cos^2 theta sin theta)^(2/3)`
`= a^(1/3) (cos^3 theta + 3 cos theta sin^2 theta + sin^3 theta + 3 cos^2 theta sin theta)^(2/3) + a^(2/3) (cos^3 theta + 3 cos theta sin^2 theta + sin^3 theta - 3 cos^2 theta sin theta)^(2/3)`
`= a^(1/3) [(cos theta + sin theta)^3]^(2/3) + a^(2/3) (cos theta - sin theta)^3]^(2/3)`
`= a^(2/3) [(cos theta + sin theta)^2] + a^(2/3) (cos theta - sin theta)^2`
`= a^(2/3) [cos^2 theta + sin^2 theta - 2sin theta cos theta]`
`= a^(2/3) [cos^2 theta + sin^2 theta + 2 sin theta cos theta] +_ a^(2/3) [cos^2 theta + sin^2 theta - 2 sin theta cos theta]`
`= a^(2/3) [1 + 2 sin theta cos theta] + a^(2/3)[1 - 2 sin theta cos theta]`
`= a^(2/3) [1 + 2 sin theta cos theta + 1 - 2 sin theta cos theta]`
`= a^(1/3) (1 + 1) = 2a^(2/3)`
R.H.S
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
Prove that:
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Prove the following identities:
(1 + tan A + sec A) (1 + cot A – cosec A) = 2
Prove that:
`cot^2A/(cosecA - 1) - 1 = cosecA`
Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
If tanθ `= 3/4` then find the value of secθ.
Write the value of cosec2 (90° − θ) − tan2 θ.
Prove the following identity :
tanA+cotA=secAcosecA
Prove the following identity :
secA(1 - sinA)(secA + tanA) = 1
Prove the following identity :
`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`
Prove that:
`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.
Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ) + cos2 θ.
Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.
Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A
If sin θ + cos θ = `sqrt(3)`, then show that tan θ + cot θ = 1
Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.
Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`