Advertisements
Advertisements
Question
Prove the following identity :
secA(1 - sinA)(secA + tanA) = 1
Solution
LHS = secA(1 - sinA)(secA + tanA)
= `1/cosA(1-sinA)(1/cosA + sinA/cosA)`
= `((1 -sinA))/cosA((1 + sinA)/cosA) = ((1 - sin^2A)/cos^2A)`
= `(cos^2A/cos^2A)`
= 1 = RHS
APPEARS IN
RELATED QUESTIONS
If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p
Prove the following trigonometric identity.
`cos^2 A + 1/(1 + cot^2 A) = 1`
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
Prove that:
(sec A − tan A)2 (1 + sin A) = (1 − sin A)
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
If x = a sin θ and y = b cos θ, what is the value of b2x2 + a2y2?
Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle.