Advertisements
Advertisements
प्रश्न
Prove the following identity :
secA(1 - sinA)(secA + tanA) = 1
उत्तर
LHS = secA(1 - sinA)(secA + tanA)
= `1/cosA(1-sinA)(1/cosA + sinA/cosA)`
= `((1 -sinA))/cosA((1 + sinA)/cosA) = ((1 - sin^2A)/cos^2A)`
= `(cos^2A/cos^2A)`
= 1 = RHS
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 + cos A)/sin^2 A = 1/(1 - cos A)`
Prove the following identities:
(cosec A + sin A) (cosec A – sin A) = cot2 A + cos2 A
If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`
Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
Write True' or False' and justify your answer the following:
\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B