हिंदी

Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B

योग

उत्तर

L.H.S = (1 – cos2A) . sec2B + tan2B(1 – sin2A)

= `sin^2"A"* 1/(cos^2"B") + (sin^2"B")/(cos^2"B") (1 - sin^2"A")`     ......`[(because sin^2"A" + cos^2"A" = 1),(therefore 1 - cos^2"A" = sin^2"A")]`

= `(sin^2"A")/(cos^2"B") + (sin^2"B")/(cos^2"B") - (sin^2"A"sin^2"B")/(cos^2"B")`

= `(sin^2"A")/(cos^2"B") - (sin^2"A"sin^2"B")/(cos^2"B") + (sin^2"B")/(cos^2"B")`

= `(sin^2"A")/(cos^2"B") (1 - sin^2"B") + tan^2"B"`

= `(sin^2"A")/(cos^2"B") (cos^2"B") + tan^2"B"`

= sin2A + tan2B

= R.H.S

∴ (1 – cos2A) . sec2B + tan2B (1 – sin2A) = sin2A + tan2B

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Q.5

संबंधित प्रश्न

 Evaluate sin25° cos65° + cos25° sin65°


Prove the following trigonometric identities.

`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`


Prove the following identities:

cosecA – cosec2 A = cot4 A + cot2 A


Prove the following identities:

`1/(secA + tanA) = secA - tanA`


Prove the following identities:

`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`


If x = a cos θ and y = b cot θ, show that:

`a^2/x^2 - b^2/y^2 = 1` 


`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`


`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`


If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`


If `sqrt(3) sin theta = cos theta  and theta ` is an acute angle, find the value of θ .


What is the value of 9cot2 θ − 9cosec2 θ? 


Write True' or False' and justify your answer the following: 

\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.


(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to


Prove the following identity : 

`cosecA + cotA = 1/(cosecA - cotA)`


Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.


Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.


Choose the correct alternative:

1 + cot2θ = ? 


If 3 sin θ = 4 cos θ, then sec θ = ?


Prove the following:

(sin α + cos α)(tan α + cot α) = sec α + cosec α


tan θ × `sqrt(1 - sin^2 θ)` is equal to:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×