Advertisements
Advertisements
प्रश्न
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B
उत्तर
L.H.S = (1 – cos2A) . sec2B + tan2B(1 – sin2A)
= `sin^2"A"* 1/(cos^2"B") + (sin^2"B")/(cos^2"B") (1 - sin^2"A")` ......`[(because sin^2"A" + cos^2"A" = 1),(therefore 1 - cos^2"A" = sin^2"A")]`
= `(sin^2"A")/(cos^2"B") + (sin^2"B")/(cos^2"B") - (sin^2"A"sin^2"B")/(cos^2"B")`
= `(sin^2"A")/(cos^2"B") - (sin^2"A"sin^2"B")/(cos^2"B") + (sin^2"B")/(cos^2"B")`
= `(sin^2"A")/(cos^2"B") (1 - sin^2"B") + tan^2"B"`
= `(sin^2"A")/(cos^2"B") (cos^2"B") + tan^2"B"`
= sin2A + tan2B
= R.H.S
∴ (1 – cos2A) . sec2B + tan2B (1 – sin2A) = sin2A + tan2B
APPEARS IN
संबंधित प्रश्न
Evaluate sin25° cos65° + cos25° sin65°
Prove the following trigonometric identities.
`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
Prove the following identities:
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
If x = a cos θ and y = b cot θ, show that:
`a^2/x^2 - b^2/y^2 = 1`
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`
If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`
If `sqrt(3) sin theta = cos theta and theta ` is an acute angle, find the value of θ .
What is the value of 9cot2 θ − 9cosec2 θ?
Write True' or False' and justify your answer the following:
\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.
(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to
Prove the following identity :
`cosecA + cotA = 1/(cosecA - cotA)`
Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.
Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.
Choose the correct alternative:
1 + cot2θ = ?
If 3 sin θ = 4 cos θ, then sec θ = ?
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α
tan θ × `sqrt(1 - sin^2 θ)` is equal to: