Advertisements
Advertisements
प्रश्न
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
उत्तर
LHS = `cos theta/((1-tan theta))-sin^2theta/((cos theta-sintheta))`
=`cos theta/((1-sintheta/costheta)) -sin^2 theta/((cos theta-sin theta))`
=`cos^2 theta/((cos theta-sintheta))- sin^2 theta/((cos theta-sin theta))`
=`(cos^2 theta- sin ^2 theta)/((cos theta- sin theta))`
=`((costheta + sin theta)( cos theta-sin theta))/((cos theta - sin theta))`
=`(cos theta + sin theta)`
= RHS
Hence, LHS = RHS
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
Prove the following identities:
`((1 + tan^2A)cotA)/(cosec^2A) = tan A`
Prove the following identities:
`sinA/(1 + cosA) = cosec A - cot A`
Prove that:
(sec A − tan A)2 (1 + sin A) = (1 − sin A)
`(sec^2 theta -1)(cosec^2 theta - 1)=1`
`cot^2 theta - 1/(sin^2 theta ) = -1`a
Write the value of tan10° tan 20° tan 70° tan 80° .
Prove the following identity :
`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`
Prove the following identity :
`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`
Prove that `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`
Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.
Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.
If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`
Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
Prove that sec2θ + cosec2θ = sec2θ × cosec2θ
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B
Prove the following:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ
Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`