Advertisements
Advertisements
प्रश्न
Prove that sec2θ + cosec2θ = sec2θ × cosec2θ
उत्तर
L.H.S = sec2θ + cosec2θ
= `1/(cos^2theta) + 1/(sin^2theta)`
= `(sin^2theta + cos^2theta)/(cos^2theta*sin^2theta)`
= `1/(cos^2theta*sin^2theta)` ......[∵ sin2θ + cos2θ = 1]
= `1/(cos^2theta) xx 1/(sin^2theta)`
= sec2θ × cosec2θ
= R.H.S
∴ sec2θ + cosec2θ = sec2θ × cosec2θ
APPEARS IN
संबंधित प्रश्न
Express the ratios cos A, tan A and sec A in terms of sin A.
Prove the following trigonometric identities.
(sec2 θ − 1) (cosec2 θ − 1) = 1
Prove the following trigonometric identities.
`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`
Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`
Prove the following identities:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
`sin^2 theta + 1/((1+tan^2 theta))=1`
If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`
Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ
Prove that:
Sin4θ - cos4θ = 1 - 2cos2θ
From the figure find the value of sinθ.
Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ?
If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.
Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`