हिंदी

Prove that cot2θ × sec2θ = cot2θ + 1 - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Prove that cot2θ × sec2θ = cot2θ + 1

योग

उत्तर

L.H.S = cot2θ × sec2θ

= `(cos^2theta)/(sin^2theta) xx 1/(cos^2theta)`

= `1/(sin^2theta)`

= cosec2θ

= 1 + cot2θ    ......[∵ 1 + cot2θ = cosec2θ]

= R.H.S

∴ cot2θ × sec2θ = cot2θ + 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Q.2 (B)

संबंधित प्रश्न

Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2


if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`


Prove the following identities:

sec2 A + cosec2 A = sec2 A . cosec2 A


Prove that:

`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`


Prove the following identities:

`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`


`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec  theta)`


Show that none of the following is an identity: 

`sin^2 theta + sin  theta =2`


Write the value of `(1 - cos^2 theta ) cosec^2 theta`.


Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:

sin θ × cosec θ = ______


What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?


Prove the following identity : 

`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`


Without using trigonometric table , evaluate : 

`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`


prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`


Prove that :(sinθ+cosecθ)2+(cosθ+ secθ)2 = 7 + tan2 θ+cotθ.


If cosθ = `5/13`, then find sinθ. 


Prove that `(sin θ tan θ)/(1 - cos θ) = 1 + sec θ.`


Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0


If cos θ = `24/25`, then sin θ = ?


If tan α + cot α = 2, then tan20α + cot20α = ______.


Find the value of sin2θ  + cos2θ

Solution:

In Δ ABC, ∠ABC = 90°, ∠C = θ°

AB2 + BC2 = `square`   .....(Pythagoras theorem)

Divide both sides by AC2

`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`

∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`

But `"AB"/"AC" = square and "BC"/"AC" = square`

∴ `sin^2 theta  + cos^2 theta = square` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×