Advertisements
Advertisements
प्रश्न
prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`
उत्तर
LHS = `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A))`
= `1/(1 + sinA) + 1/(1 - sinA)`
= `(1 - sinA + 1 + sinA)/((1 + sinA)(1 - sinA))`
= `2/(1 - sin^2A)`
= `2/cos^2A`
= `2sec^2A = 2cosec^2(90^circ - A)`
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
Find the value of ( sin2 33° + sin2 57°).
Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.
Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.
Choose the correct alternative:
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.
Activity:
L.H.S = `square`
= `cos^2theta xx square .....[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= R.H.S
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`
Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`