Advertisements
Advertisements
प्रश्न
Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.
उत्तर
LHS = (cosec A - sin A)(sec A - cos A). sec2A
= `(1/sin A - sin A).(1/cos A - cos A). 1/cos^2 A`
= `(1- sin^2A)/sin A.(1- cos^2 A)/(cos A) xx 1/cos^2 A`
= `cos^2 A/sin A xx sin^2 A/cos A xx 1/cos^2 A ....[ ∵ ( 1 - sin^2 A) = cos^2 A, 1 - cos^2 A = sin^2 A]`
= `sin A/cos A = tan A`
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
Write True' or False' and justify your answer the following :
The value of the expression \[\sin {80}^° - \cos {80}^°\]
The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]
Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A
Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2.
Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.
If x sin3 θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ, then prove that x2 + y2 = 1