हिंदी

Prove the Following Trigonometric Identities. (1 + Cot a + Tan A)(Sin a - Cos A) = Sec A/(Cosec^2 A) - (Cosec A)/Sec^2 a = Sin a Tan a - Cos a Cot a - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`

उत्तर

We have prove that

`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`

We know that `sin^2 A + cos^2 A = 1`

So,

(2 + cot A + tan A)(sin A - cos A)

`= (1 + cos A/sin A + sin A/cos A)(sin A - cos A)`

`= ((sin A cos A + cos^2 A + sin^2 A)/(sin A cos A)) (sin A  - cos A)`

`= ((sin A cos A + 1)/(sin A cos A))(sin A - cos A)`

`= ((sin A - cos A)(sin A cos A + 1))/(sin A cos A)`

`= (sin^2 A cos A + sin A - cos^2 A sin A  - cos A)/(sin A cos A)`

`= ((sin^2 A cos A - cos A) + (sin A - cos^2 A sin A))/(sin A cos A)`

`= (cos A (sin^2 A - 1)+ sin A (1 - sin^2 A))/(sin A cos A)`

`= (cos A (-cos^2 A) + sin A (sin^2 A))/(sin A cos A)`

`= (-cos^3 A + sin^3 A)/(sin A cos A)`

`= (sin^3 A - cos^3 A)/(sin A cos A)`

`= (sin^2  A)/cos A - cos^2 A/sin A`

`= sin A/cos A sin A - cos A/sin A cos A`

`= tan A sin A -  cot A cos A`

= sin A tan A - cos A cot A

Now

`sec A/(cosec^2 A) - (cosec A)/sec^2 A = (1/cos A)/(1/sin^2 A) - (1/sin A)/(1/cos^2 A)`

`= sin^2 A/cos A - cos^2 A/sin A`

`= sin A sin A/cos a - cos A cos A/sin A`

= sin A tan A - cos A cot A

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 68 | पृष्ठ ४६

संबंधित प्रश्न

Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2


Prove the following trigonometric identities

`(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`


Prove the following trigonometric identities.

`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`


Prove the following trigonometric identities.

`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`


If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.


If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`


 Write True' or False' and justify your answer  the following : 

The value of sin θ+cos θ is always greater than 1 .


Prove the following identity :

`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`


There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.


Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.


`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A


Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .


If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.


Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`


Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.


If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4


Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1


If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.


Complete the following activity to prove:

cotθ + tanθ = cosecθ × secθ

Activity: L.H.S. = cotθ + tanθ

= `cosθ/sinθ + square/cosθ`

= `(square + sin^2theta)/(sinθ xx cosθ)`

= `1/(sinθ xx  cosθ)` ....... ∵ `square`

= `1/sinθ xx 1/cosθ`

= `square xx secθ`

∴ L.H.S. = R.H.S.


If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×