मराठी

Prove the Following Trigonometric Identities. (1 + Cot a + Tan A)(Sin a - Cos A) = Sec A/(Cosec^2 A) - (Cosec A)/Sec^2 a = Sin a Tan a - Cos a Cot a - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`

उत्तर

We have prove that

`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`

We know that `sin^2 A + cos^2 A = 1`

So,

(2 + cot A + tan A)(sin A - cos A)

`= (1 + cos A/sin A + sin A/cos A)(sin A - cos A)`

`= ((sin A cos A + cos^2 A + sin^2 A)/(sin A cos A)) (sin A  - cos A)`

`= ((sin A cos A + 1)/(sin A cos A))(sin A - cos A)`

`= ((sin A - cos A)(sin A cos A + 1))/(sin A cos A)`

`= (sin^2 A cos A + sin A - cos^2 A sin A  - cos A)/(sin A cos A)`

`= ((sin^2 A cos A - cos A) + (sin A - cos^2 A sin A))/(sin A cos A)`

`= (cos A (sin^2 A - 1)+ sin A (1 - sin^2 A))/(sin A cos A)`

`= (cos A (-cos^2 A) + sin A (sin^2 A))/(sin A cos A)`

`= (-cos^3 A + sin^3 A)/(sin A cos A)`

`= (sin^3 A - cos^3 A)/(sin A cos A)`

`= (sin^2  A)/cos A - cos^2 A/sin A`

`= sin A/cos A sin A - cos A/sin A cos A`

`= tan A sin A -  cot A cos A`

= sin A tan A - cos A cot A

Now

`sec A/(cosec^2 A) - (cosec A)/sec^2 A = (1/cos A)/(1/sin^2 A) - (1/sin A)/(1/cos^2 A)`

`= sin^2 A/cos A - cos^2 A/sin A`

`= sin A sin A/cos a - cos A cos A/sin A`

= sin A tan A - cos A cot A

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 68 | पृष्ठ ४६

संबंधित प्रश्‍न

Prove the following identities:

`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`

`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`

`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`


 

Evaluate

`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`

 

Prove the following trigonometric identities

tan2 A + cot2 A = sec2 A cosec2 A − 2


If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`


Prove the following identities:

(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A


`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`


` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`


`(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) = 2/((sin^2 theta - cos ^2 theta)) = 2/((2 sin^2 theta -1))`


Show that none of the following is an identity: 

`sin^2 theta + sin  theta =2`


If `sec theta + tan theta = x,"  find the value of " sec theta`


Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.


Prove the following identity : 

`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`


Without using trigonometric identity , show that :

`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`


Choose the correct alternative:

1 + tan2 θ = ?


Find the value of ( sin2 33° + sin2 57°).


Prove that `1/("cosec"  theta - cot theta)` = cosec θ + cot θ


If tan θ + cot θ = 2, then tan2θ + cot2θ = ?


If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.


tan θ × `sqrt(1 - sin^2 θ)` is equal to:


If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×