Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
उत्तर
We have prove that
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
We know that `sin^2 A + cos^2 A = 1`
So,
(2 + cot A + tan A)(sin A - cos A)
`= (1 + cos A/sin A + sin A/cos A)(sin A - cos A)`
`= ((sin A cos A + cos^2 A + sin^2 A)/(sin A cos A)) (sin A - cos A)`
`= ((sin A cos A + 1)/(sin A cos A))(sin A - cos A)`
`= ((sin A - cos A)(sin A cos A + 1))/(sin A cos A)`
`= (sin^2 A cos A + sin A - cos^2 A sin A - cos A)/(sin A cos A)`
`= ((sin^2 A cos A - cos A) + (sin A - cos^2 A sin A))/(sin A cos A)`
`= (cos A (sin^2 A - 1)+ sin A (1 - sin^2 A))/(sin A cos A)`
`= (cos A (-cos^2 A) + sin A (sin^2 A))/(sin A cos A)`
`= (-cos^3 A + sin^3 A)/(sin A cos A)`
`= (sin^3 A - cos^3 A)/(sin A cos A)`
`= (sin^2 A)/cos A - cos^2 A/sin A`
`= sin A/cos A sin A - cos A/sin A cos A`
`= tan A sin A - cot A cos A`
= sin A tan A - cos A cot A
Now
`sec A/(cosec^2 A) - (cosec A)/sec^2 A = (1/cos A)/(1/sin^2 A) - (1/sin A)/(1/cos^2 A)`
`= sin^2 A/cos A - cos^2 A/sin A`
`= sin A sin A/cos a - cos A cos A/sin A`
= sin A tan A - cos A cot A
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`
`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`
`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`
Evaluate
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
Prove the following trigonometric identities
tan2 A + cot2 A = sec2 A cosec2 A − 2
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`
Prove the following identities:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`
` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`
`(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) = 2/((sin^2 theta - cos ^2 theta)) = 2/((2 sin^2 theta -1))`
Show that none of the following is an identity:
`sin^2 theta + sin theta =2`
If `sec theta + tan theta = x," find the value of " sec theta`
Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
Prove the following identity :
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Without using trigonometric identity , show that :
`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`
Choose the correct alternative:
1 + tan2 θ = ?
Find the value of ( sin2 33° + sin2 57°).
Prove that `1/("cosec" theta - cot theta)` = cosec θ + cot θ
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.
tan θ × `sqrt(1 - sin^2 θ)` is equal to:
If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.