Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
1 + tan2 θ = ?
पर्याय
Sin2 θ
Sec2 θ
Cosec2 θ
Cot2 θ
उत्तर
sec2θ
Explanation:
1 + tan2θ = sec2θ
APPEARS IN
संबंधित प्रश्न
`"If "\frac{\cos \alpha }{\cos \beta }=m\text{ and }\frac{\cos \alpha }{\sin \beta }=n " show that " (m^2 + n^2 ) cos^2 β = n^2`
Prove the following trigonometric identities.
(sec2 θ − 1) (cosec2 θ − 1) = 1
`Prove the following trigonometric identities.
`(sec A - tan A)^2 = (1 - sin A)/(1 + sin A)`
Prove the following trigonometric identities
sec4 A(1 − sin4 A) − 2 tan2 A = 1
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2
Show that : tan 10° tan 15° tan 75° tan 80° = 1
`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
Write True' or False' and justify your answer the following :
The value of the expression \[\sin {80}^° - \cos {80}^°\]
Prove the following identity :
`cosA/(1 + sinA) = secA - tanA`
Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.
Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to
If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ