Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities
sec4 A(1 − sin4 A) − 2 tan2 A = 1
उत्तर
We have to prove sec4 A(1 − sin4 A) − 2 tan2 A = 1
We know that `sin^2 A + cos^2 A = 1`
So,
`sec^4 A (1 - sin^4 A) - 2tan^2 A = 1/cos^4 A (1 - sin^4 A) - 2 sin^2 A/cos^2 A`
`= (1/cos^4 A - sin^4 A/cos^4 A) - 2 (sin^2 A)/(cos^2 A)`
`= ((1 - sin^4 A)/cos^4 A) - 2 (sin^2 A)/cos^2 A`
`= ((1 - sin^2 A)(1 + sin^2 A))/cos^4 A - 2 sin^2 A/cos^2 A`
`= (cos^2 A (1 + sin^2 A))/cos^4 A - 2 sin^2 A/cos^2 A`
`= (1 + sin^2 A - 2 sin^2 A)/cos^2 A`
`= (1 - sin^2 A)/cos^2 A`
`= cos^2 A/cos^2 A`
= 1
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`
Prove the following trigonometric identities.
`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`
If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
Prove the following identities:
`1 - sin^2A/(1 + cosA) = cosA`
Prove the following identities:
`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
cosec4θ − cosec2θ = cot4θ + cot2θ
`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`
If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`
Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
Prove that:
`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
Prove the following identities.
`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ
If tan θ = `9/40`, complete the activity to find the value of sec θ.
Activity:
sec2θ = 1 + `square` ......[Fundamental trigonometric identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square`
sec θ = `square`
Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`
If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.