Advertisements
Advertisements
प्रश्न
cosec4θ − cosec2θ = cot4θ + cot2θ
उत्तर १
LHS = cosec4θ − cosec2θ
LHS = cosec2θ (cosec2θ − 1)
`"LHS" = (cot^2θ + 1)cot^2θ ...{(cot^2θ + 1 = cosec^2θ),(∵ cot^2θ = cosec^2θ - 1):}`
LHS = cot4θ + cot2θ
RHS = cot4θ + cot2θ
RHS = LHS
Hence proved.
उत्तर २
RHS = cot4θ + cot2θ
RHS = cot2θ (cot2θ + 1)
`"RHS"=(cosec^2θ-1)cosec^2θ ...{(cot^2θ+1=cosec^2θ),(∵ cot^2θ=cosec^2θ-1):}`
RHS = cosec4θ − cosec2θ
LHS = cosec4θ − cosec2θ
RHS = LHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`
[Hint: Write the expression in terms of sinθ and cosθ]
Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`
Given that:
(1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)
Show that one of the values of each member of this equality is sin α sin β sin γ
Prove the following identities:
(cosec A + sin A) (cosec A – sin A) = cot2 A + cos2 A
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`
` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`
`(cos theta cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`
Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
Prove the following identity :
`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`
Prove the following identity :
`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`
Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2.
Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
Prove the following identities.
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
If 3 sin θ = 4 cos θ, then sec θ = ?
tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= R.H.S
If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.