मराठी

Cosec4θ + cosec2θ = cot4θ + cot2θ - Mathematics

Advertisements
Advertisements

प्रश्न

cosec4θ − cosec2θ = cot4θ + cot2θ

बेरीज

उत्तर १

LHS = cosec4θ − cosec2θ

LHS = cosec2θ (cosec2θ − 1)

`"LHS" = (cot^2θ + 1)cot^2θ     ...{(cot^2θ + 1 = cosec^2θ),(∵ cot^2θ = cosec^2θ - 1):}`

LHS = cot4θ + cot2θ

RHS = cot4θ + cot2θ

RHS = LHS 

Hence proved.

shaalaa.com

उत्तर २

RHS = cot4θ + cot2θ

RHS = cot2θ (cot2θ + 1) 

`"RHS"=(cosec^2θ-1)cosec^2θ  ...{(cot^2θ+1=cosec^2θ),(∵ cot^2θ=cosec^2θ-1):}`

RHS = cosec4θ − cosec2θ

LHS = cosec4θ − cosec2θ

RHS = LHS 

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Trigonometric Identities - Exercises 1

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 8 Trigonometric Identities
Exercises 1 | Q 17.3

संबंधित प्रश्‍न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`

[Hint: Write the expression in terms of sinθ and cosθ]


Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`


Given that:
(1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)

Show that one of the values of each member of this equality is sin α sin β sin γ


Prove the following identities:

(cosec A + sin A) (cosec A – sin A) = cot2 A + cos2 A


If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A


`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`


` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`


`(cos theta  cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`


Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`


Prove the following identity :

`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`


Prove the following identity  :

`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`


Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2. 


Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`


Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.


Prove the following identities.

(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2


If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1


Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ


If 3 sin θ = 4 cos θ, then sec θ = ?


tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

= `square (1 - (sin^2theta)/(tan^2theta))`

= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`

= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`

= `tan^2theta (1 - square)`

= `tan^2theta xx square`    .....[1 – cos2θ = sin2θ]

= R.H.S


If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×