मराठी

If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = a2+b2-c2. - Mathematics

Advertisements
Advertisements

प्रश्न

If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.

बेरीज

उत्तर

Given that,

a sin θ + b cos θ = c

On squaring both sides,

(a . sin θ + cos θ . b)2 = c2

⇒ a2sin2θ + b2cos2θ + 2ab sin θ . cos θ = c2  ...[∵ (x + y)2 = x2 + 2xy + y2]

⇒ a2(1 – cos2θ) + b2(1 – sin2θ) + 2ab sinθ . cosθ = c2  ...[∵ sin2θ + cos2θ = 1]

⇒ a2 – a2 cos2θ + b2 – b2sin2θ + 2ab sinθ . cosθ = c2

⇒ a2 + b2 – c2 = a2cos2θ + b2sin2θ – 2ab sinθ . cosθ

⇒ (a2 + b2 – c2) = (a cos θ – b sin θ)2  ...[∵ a2 + b2 – 2ab = (a – b)2]

⇒ (a cos θ – b sin θ)2 = a2 + b2 – c2

⇒ a cos θ – b sin θ = `sqrt(a^2 + b^2 + c^2)`

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Introduction To Trigonometry and Its Applications - Exercise 8.4 [पृष्ठ ९९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
पाठ 8 Introduction To Trigonometry and Its Applications
Exercise 8.4 | Q 11 | पृष्ठ ९९

संबंधित प्रश्‍न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.


Prove the following trigonometric identities.

`sin^2 A + 1/(1 + tan^2 A) = 1`


Prove the following identities:

`(1 + sin A)/(1 - sin A) = (cosec  A + 1)/(cosec  A - 1)`


Prove that:

`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`


Prove the following identities:

`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`


Prove the following identities:

`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`


Write the value of `(1 - cos^2 theta ) cosec^2 theta`.


If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ = 


Prove the following identity :

`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`


Prove the following identity : 

`((1 + tan^2A)cotA)/(cosec^2A) = tanA`


Prove the following identity : 

`sqrt(cosec^2q - 1) = "cosq  cosecq"`


Prove the following identity : 

`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`


Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle. 


If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2


Prove that  `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.


If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to


Choose the correct alternative:

Which is not correct formula?


Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1


Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1


If 5 tan β = 4, then `(5  sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×