Advertisements
Advertisements
प्रश्न
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.
उत्तर
Given that,
a sin θ + b cos θ = c
On squaring both sides,
(a . sin θ + cos θ . b)2 = c2
⇒ a2sin2θ + b2cos2θ + 2ab sin θ . cos θ = c2 ...[∵ (x + y)2 = x2 + 2xy + y2]
⇒ a2(1 – cos2θ) + b2(1 – sin2θ) + 2ab sinθ . cosθ = c2 ...[∵ sin2θ + cos2θ = 1]
⇒ a2 – a2 cos2θ + b2 – b2sin2θ + 2ab sinθ . cosθ = c2
⇒ a2 + b2 – c2 = a2cos2θ + b2sin2θ – 2ab sinθ . cosθ
⇒ (a2 + b2 – c2) = (a cos θ – b sin θ)2 ...[∵ a2 + b2 – 2ab = (a – b)2]
⇒ (a cos θ – b sin θ)2 = a2 + b2 – c2
⇒ a cos θ – b sin θ = `sqrt(a^2 + b^2 + c^2)`
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.
Prove the following trigonometric identities.
`sin^2 A + 1/(1 + tan^2 A) = 1`
Prove the following identities:
`(1 + sin A)/(1 - sin A) = (cosec A + 1)/(cosec A - 1)`
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
Prove the following identities:
`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`
Prove the following identities:
`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
Prove the following identity :
`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
Prove the following identity :
`sqrt(cosec^2q - 1) = "cosq cosecq"`
Prove the following identity :
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`
Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle.
If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2.
Prove that `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.
If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to
Choose the correct alternative:
Which is not correct formula?
Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1
Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.