Advertisements
Advertisements
प्रश्न
If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2.
उत्तर
We have,
x = r sin θ cos Φ,
y = r sin θ sin Φ,
z = r cos θ
Squaring and adding,
x2 + y2 + z2
= r2 sin2θ cos2Φ + r2 sin2θ sin2Φ + r2 cos2θ
= r2 sin2θ (cos2Φ + sin2Φ) + r2 cos2θ
= r2 sin2θ x (1) + r2 cos2θ
= r2 (sin2θ + cos2θ)
= r2 x 1 = r2
Hence, x2 + y2 + z2 = r2.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
Prove the following identity :
`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`
Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ
Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.
Prove the following identities.
`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2
Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1
Prove the following identity:
(sin2θ – 1)(tan2θ + 1) + 1 = 0