Advertisements
Advertisements
प्रश्न
Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1
उत्तर
L.H.S = `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) * tan(30^circ - theta))`
= `(cos^2(45^circ + theta) + [sin{90^circ - (45^circ - theta)}]^2)/(tan(60^circ + theta) * cot{90^circ - (30^circ - theta)})` ...[∵ sin(90° – θ) = cos θ and cot(90° – θ) = tan θ]
= `(cos^2(45^circ + theta) + sin^2(45^circ + theta))/(tan(60^circ + theta) * cot(60^circ + theta))` ...[∵ sin2θ + cos2θ = 1]
= `1/(tan(60^circ + theta) * 1/(tan(60^circ + theta))` ...`[∵ cot θ = 1/tanθ]`
= 1
= R.H.S
APPEARS IN
संबंधित प्रश्न
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2 = 2`
If cos θ + cot θ = m and cosec θ – cot θ = n, prove that mn = 1
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Prove that:
(sec A − tan A)2 (1 + sin A) = (1 − sin A)
Prove the following identities:
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`
Prove that:
(cosec A – sin A) (sec A – cos A) sec2 A = tan A
`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`
2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`
Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2.
Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle.
Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`
Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ
Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`
Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B
If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`
If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3