Advertisements
Advertisements
प्रश्न
Prove that:
(sec A − tan A)2 (1 + sin A) = (1 − sin A)
उत्तर
L.H.S. = (sec A − tan A)2 (1 + sin A)
`(1/cos "A" - sin "A"/cos "A")^2 (1 + sin "A")`
= `((1 - sin "A")/cos "A")^2 (1 + sin "A")`
= `((1 - sin "A")(1 - sin "A")(1 + sin "A"))/cos^2"A"`
= `((1 - sin "A")(1 - sin^2 "A"))/cos^2"A"`
= `((1 - sin "A")cos^2"A")/cos^2"A"`
= (1 − sin A) R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
Prove the following identities:
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`
Write the value of sin A cos (90° − A) + cos A sin (90° − A).
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.
Let α, β be such that π < α – β < 3π. If sin α + sin β = `-21/65` and cos α + cos β = `-27/65`, then the value of `cos (α - β)/2` is ______.