Advertisements
Advertisements
प्रश्न
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
उत्तर
Let `x/a=y/b = z/c` = k
=> x = ak, y = bk, z = ck
L.H.S = `x^3/a^3 + y^3/b^3 + z^3/c^3`
`= (ak)^3/(a^3) + (bk)^3/b^3 + (ck)^3/c^3`
`= (a^3k^3)/a^3 + (b^3k^3)/b^3 + (c^3k^3)/c^3`
`= k^3 + k^3 + k^3`
= `3k^3`
R.H.S = `(3xyz)/(abc)`
`= (3(ak)(bk)(ck))/(abc)`
`= (3(k^3)(abc))/(abc)`
`= 3k^3`
= L.H.S
=> L.H.S = R.H.S
`=> x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`
Prove the following identities:
`sinA/(1 + cosA) = cosec A - cot A`
`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `
If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`
Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50° cosec 40 °`
2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to
Without using trigonometric table , evaluate :
`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`
Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.
If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.
Prove that sec2θ – cos2θ = tan2θ + sin2θ