Advertisements
Advertisements
प्रश्न
Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50° cosec 40 °`
उत्तर
`(sin 50°)/(cos 40 °)+ ( cosec 40° )/( sec 50°) - 4 cos 50° cosec 40°`
`=(cos (90°- 50°))/(cos 40°) + (sec (90°- 40°))/(sec 50°)- 4 sin (90°-50°) cosec 40°`
`=(cos 40° )/( cos 40 °) + ( sec50°)/( sec 50°) - 4 sin 40 ° xx 1/ ( sin 40 °)`
= 1 + 1 - 4
= - 2
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
Prove the following trigonometric identity.
`cos^2 A + 1/(1 + cot^2 A) = 1`
Prove the following identities:
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`
`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
`(cos theta cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`
Show that none of the following is an identity:
`sin^2 theta + sin theta =2`
Prove the following identity :
`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`
Prove the following identity :
`(cotA + tanB)/(cotB + tanA) = cotAtanB`
Prove that:
tan (55° + x) = cot (35° – x)
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.
If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.
Prove the following identities:
`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.
Choose the correct alternative:
cos 45° = ?
If tan θ × A = sin θ, then A = ?
Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A