Advertisements
Advertisements
प्रश्न
`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`
उत्तर
LHS = `sin^6 theta + cos^6 theta`
=` (sin^2 theta )^3 + (cos^2 theta )^3`
Put sin2 θ = a and cos2 θ = b
∴ L.H.S. = a3 + b3
= (a + b)3 − 2ab (a + b)
=`(sin ^2 theta + cos^2 theta )-3 sin^2thetacos^2 theta(sin^2 theta cos^2 theta)`
=`(1)^3 - 3 sin^2 theta cos^2 theta` [∴ sin2 θ + cos2 θ = 1]
=`1-3sin^2 theta cos^2 theta`
= RHS
Hence, LHS = RHS
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`
`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`
`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`
Prove that `cosA/(1+sinA) + tan A = secA`
Prove the following trigonometric identities:
`(1 - cos^2 A) cosec^2 A = 1`
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
Prove the following identities:
sec2 A . cosec2 A = tan2 A + cot2 A + 2
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`
Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50° cosec 40 °`
What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?
(sec A + tan A) (1 − sin A) = ______.
Prove that:
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
Prove the following identity :
`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.
If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.
Prove that sec2θ − cos2θ = tan2θ + sin2θ
Show that: `tan "A"/(1 + tan^2 "A")^2 + cot "A"/(1 + cot^2 "A")^2 = sin"A" xx cos"A"`