मराठी

Sin6θ+cos6θ=1-3sin2θcos2θ - Mathematics

Advertisements
Advertisements

प्रश्न

`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`

बेरीज

उत्तर

LHS = `sin^6 theta + cos^6 theta`

=` (sin^2 theta )^3 + (cos^2 theta )^3`

Put sin2 θ = a and cos2 θ = b

∴ L.H.S. = a3 + b3

= (a + b)3 − 2ab (a + b)

=`(sin ^2 theta + cos^2 theta )-3 sin^2thetacos^2 theta(sin^2 theta cos^2 theta)`

=`(1)^3 - 3 sin^2 theta cos^2 theta`  [∴ sin2 θ + cos2 θ = 1]

=`1-3sin^2 theta cos^2 theta`

= RHS

Hence, LHS = RHS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Trigonometric Identities - Exercises 1

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 8 Trigonometric Identities
Exercises 1 | Q 17.1

संबंधित प्रश्‍न

Prove the following identities:

`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`

`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`

`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`


Prove that `cosA/(1+sinA) + tan A =  secA`


Prove the following trigonometric identities:

`(1 - cos^2 A) cosec^2 A = 1`


Prove the following trigonometric identities.

tan2θ cos2θ = 1 − cos2θ


Prove the following trigonometric identities

If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2


Prove the following identities:

`1/(secA + tanA) = secA - tanA`


Prove the following identities:

sec2 A . cosec2 A = tan2 A + cot2 A + 2


Prove the following identities:

`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`


`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`


Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50°   cosec 40 °`


What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?


(sec A + tan A) (1 − sin A) = ______.


Prove that: 
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1


Prove the following identity :

`sec^2A + cosec^2A = sec^2Acosec^2A`


Prove the following identity :

`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`


If `x/(a cosθ) = y/(b sinθ)   "and"  (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that"  x^2/a^2 + y^2/b^2 = 1`


Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.


If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.


Prove that sec2θ − cos2θ = tan2θ + sin2θ


Show that: `tan "A"/(1 + tan^2 "A")^2 + cot "A"/(1 + cot^2 "A")^2 = sin"A" xx cos"A"`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×