Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
उत्तर
`Given that
`x = a sec theta + b tan theta`
`y = a ta theta + b sec theta`
We have to prove `x^2 - y^2 = a^2 - b^2`
We know that `sec^2 theta - tan^2 theta = 1`
So,
`x^2 - y^2`
`= (a sec theta + b tan theta)^2 - (a tan theta + b sec theta)^2`
`= (a^2 sec^2 theta + 2 ab sec theta + b^2 tan^2 theta) - (a^2 tan^2 theta + 2 ab sec theta tan theta + b^2 + sec^2 theta)`
`= a^2 (sec^2 theta - tan^2 theta) - b^2 (sec^2 theta - tan^2 theta)`
`= a^2 - b^2 `
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove the following trigonometric identities.
`(1 + cos A)/sin A = sin A/(1 - cos A)`
Prove the following trigonometric identity.
`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`
If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
Prove the following identities:
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2
`(1+ cos theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`
Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`
Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`
For ΔABC , prove that :
`tan ((B + C)/2) = cot "A/2`
Prove that :
2(sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) + 1 = 0
Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.
Prove the following identities.
cot θ + tan θ = sec θ cosec θ
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1
Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A
Prove that sec2θ – cos2θ = tan2θ + sin2θ
If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.
Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)