मराठी

Prove the Following Trigonometric Identities If X = A Sec θ + B Tan θ And Y = A Tan θ + B Sec θ, Prove That X2 − Y2 = A2 − B2 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities

If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2

उत्तर

`Given that

`x = a sec theta + b tan theta`

`y = a ta theta +  b sec theta`

We have to prove  `x^2 - y^2 = a^2 - b^2`

We know that `sec^2 theta - tan^2 theta  = 1`

So,

`x^2 - y^2`

`= (a sec theta + b tan theta)^2 - (a tan theta + b sec theta)^2`

`= (a^2 sec^2 theta + 2 ab sec theta + b^2 tan^2 theta) - (a^2 tan^2 theta +  2 ab sec theta tan theta + b^2 + sec^2 theta)`

`= a^2 (sec^2 theta  -  tan^2 theta) - b^2 (sec^2 theta -  tan^2 theta)`

`= a^2 - b^2 `

Hence proved. 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 74 | पृष्ठ ४६

संबंधित प्रश्‍न

Prove the following trigonometric identities

(1 + cot2 A) sin2 A = 1


Prove the following trigonometric identities.

`(1 + cos A)/sin A = sin A/(1 - cos A)`


Prove the following trigonometric identity.

`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`


If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1


Prove the following identities:

`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`


Prove the following identities:

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`


If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2


`(1+ cos  theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`


Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`


Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`


For ΔABC , prove that : 

`tan ((B + C)/2) = cot "A/2`


Prove that :
2(sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) + 1 = 0


Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.


Prove the following identities.

cot θ + tan θ = sec θ cosec θ


If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1


Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A


Prove that sec2θ – cos2θ = tan2θ + sin2θ


If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3


If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.


Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×