Advertisements
Advertisements
प्रश्न
If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2
उत्तर
m2 + n2
= (x cos A + y sin A)2 + (x sin A – y cos A)2
= x2 cos2 A + y2 sin2 A + 2xy sin A cos A + x2 sin2 A + y2 cos2 A – 2xy sin A cos A
= x2 (cos2 A + sin2 A) + y2 (cos2 A + sin2 A)
= x2 + y2
Hence, x2 + y2 = m2 + n2
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
Prove the following trigonometric identities.
`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`
Prove the following identities:
cot2 A – cos2 A = cos2 A . cot2 A
If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2
`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.
Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.