Advertisements
Advertisements
प्रश्न
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
उत्तर
LHS = `(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))`
=`(sin theta cos theta)/(1+ sin theta - cos theta)+(cos theta sin theta)/(1+ cos theta - sin theta)`
=`sin theta cos theta [1/(1+ (sin theta - cos theta))+ 1/(1- (sin theta - cos theta))]`
=`sin theta cos theta [(1-(sin theta - cos theta)+1+(sin theta - cos theta))/({1+ (sin theta - cos theta )}{1- (sin theta-cos theta)})]`
=`sin theta cos theta[(1-sin theta + cos theta +1+sin theta - cos theta)/(1-(sin theta - cos theta)^2)]`
=`(2 sin theta cos theta)/(1-(sin ^2 theta + cos^2 theta -2 sin theta cos theta))`
=`(2 sin theta cos theta )/(2 sin theta cos theta)`
=1
= RHS
Hence, LHS = RHS
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`
`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`
`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`
Prove the following identities:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Show that : `sinAcosA - (sinAcos(90^circ - A)cosA)/sec(90^circ - A) - (cosAsin(90^circ - A)sinA)/(cosec(90^circ - A)) = 0`
Prove the following identities:
`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
Prove the following identities:
sec4 A (1 – sin4 A) – 2 tan2 A = 1
`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`
Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`.
Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:
sin θ × cosec θ = ______
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
Prove the following identity :
`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Prove the following identity :
`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
Choose the correct alternative:
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.
If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.
Prove the following identity:
(sin2θ – 1)(tan2θ + 1) + 1 = 0