Advertisements
Advertisements
प्रश्न
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
उत्तर
LHS = `(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))`
=`(sin theta cos theta)/(1+ sin theta - cos theta)+(cos theta sin theta)/(1+ cos theta - sin theta)`
=`sin theta cos theta [1/(1+ (sin theta - cos theta))+ 1/(1- (sin theta - cos theta))]`
=`sin theta cos theta [(1-(sin theta - cos theta)+1+(sin theta - cos theta))/({1+ (sin theta - cos theta )}{1- (sin theta-cos theta)})]`
=`sin theta cos theta[(1-sin theta + cos theta +1+sin theta - cos theta)/(1-(sin theta - cos theta)^2)]`
=`(2 sin theta cos theta)/(1-(sin ^2 theta + cos^2 theta -2 sin theta cos theta))`
=`(2 sin theta cos theta )/(2 sin theta cos theta)`
=1
= RHS
Hence, LHS = RHS
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `
Prove the following identities:
`(i) 2 (sin^6 θ + cos^6 θ) –3(sin^4 θ + cos^4 θ) + 1 = 0`
`(ii) (sin^8 θ – cos^8 θ) = (sin^2 θ – cos^2 θ) (1 – 2sin^2 θ cos^2 θ)`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.
Prove the following trigonometric identities
`cos theta/(1 - sin theta) = (1 + sin theta)/cos theta`
Prove the following trigonometric identities.
`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`
Prove the following trigonometric identities.
`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`
Prove the following trigonometric identities.
`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = tan theta`
if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
Prove that:
`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
Prove the following identities:
`1 - sin^2A/(1 + cosA) = cosA`
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.
Prove the following identities.
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`
If cos θ = `24/25`, then sin θ = ?
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.