हिंदी

`(Sin Theta)/((Sec Theta + Tan Theta -1)) + Cos Theta/((Cosec Theta + Cot Theta -1))=1` - Mathematics

Advertisements
Advertisements

प्रश्न

`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`

उत्तर

LHS = `(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))`

       =`(sin theta  cos theta)/(1+ sin theta - cos theta)+(cos theta  sin theta)/(1+ cos theta - sin theta)`

      =`sin theta cos theta [1/(1+ (sin theta - cos theta))+ 1/(1- (sin theta - cos theta))]`

      =`sin theta cos theta [(1-(sin theta - cos theta)+1+(sin theta - cos theta))/({1+ (sin theta - cos theta )}{1- (sin theta-cos theta)})]`

     =`sin theta cos theta[(1-sin theta + cos theta +1+sin theta - cos theta)/(1-(sin theta - cos theta)^2)]`

     =`(2 sin theta cos theta)/(1-(sin ^2 theta + cos^2 theta -2 sin theta cos theta))`

    =`(2 sin theta cos theta )/(2 sin theta cos theta)`

    =1

    = RHS
Hence, LHS = RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Trigonometric Identities - Exercises 1

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 8 Trigonometric Identities
Exercises 1 | Q 28

संबंधित प्रश्न

Prove the following trigonometric identities:

`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `


Prove the following identities:

`(i) 2 (sin^6 θ + cos^6 θ) –3(sin^4 θ + cos^4 θ) + 1 = 0`

`(ii) (sin^8 θ – cos^8 θ) = (sin^2 θ – cos^2 θ) (1 – 2sin^2 θ cos^2 θ)`


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.


Prove the following trigonometric identities

`cos theta/(1 - sin theta) = (1 + sin theta)/cos theta`


Prove the following trigonometric identities.

`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`


Prove the following trigonometric identities.

`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`


Prove the following trigonometric identities.

`((1 + tan^2 theta)cot theta)/(cosec^2 theta)   = tan theta`


if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`


If sin θ + cos θ = x, prove that  `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`


Prove that:

`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`


If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2


Prove the following identities:

`1 - sin^2A/(1 + cosA) = cosA`


`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec  theta)`


Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`


If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.


Prove the following identity : 

`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq


Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.


Prove the following identities.

`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec"  theta - 1)/("cosec"  theta + 1)`


If cos θ = `24/25`, then sin θ = ?


Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×