Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`
उत्तर
We know that `sin^2 theta + cos^2 theta = 1`
Multiplying both numerator and the denominator by `(1 - sin theta)`, we have
`cos theta/(1 + sin theta) = (cos theta(1 - sin theta))/((1 + sin theta)(1 - sin theta))`
`= (cos theta(1 - sin theta))/(1 - sin^2 theta)`
`= (cos theta (1 - sin theta))/cos^2 theta`
`= (1 - sin theta)/cos theta`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(cos^2 theta)/sin theta - cosec theta + sin theta = 0`
Prove the following trigonometric identities.
`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`
Prove the following trigonometric identities.
`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`
Prove the following identities:
`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.
Write the value of `(1 + cot^2 theta ) sin^2 theta`.
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:
sin θ × cosec θ = ______
Simplify
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`
Prove the following identity :
secA(1 - sinA)(secA + tanA) = 1
Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A
Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tan2 θ + cot2 θ.
Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`
Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ) + cos2 θ.
Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`
Choose the correct alternative:
sec 60° = ?
Prove that
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`
Prove that
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"`
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.