हिंदी

Prove the Following Trigonometric Identities. Cos Theta/(1 + Sin Theta) = (1 - Sin Theta)/Cos Theta - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`

उत्तर

We know that `sin^2 theta + cos^2 theta = 1`

Multiplying both numerator and the denominator by `(1 - sin theta)`, we have

`cos theta/(1 + sin theta) = (cos theta(1 - sin theta))/((1 + sin theta)(1 - sin theta))`

`= (cos theta(1 - sin theta))/(1 - sin^2 theta)`

`= (cos theta (1 - sin theta))/cos^2 theta`

`= (1 - sin theta)/cos theta`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 8 | पृष्ठ ४३

संबंधित प्रश्न

Prove the following trigonometric identities.

`(cos^2 theta)/sin theta - cosec theta +  sin theta  = 0`


Prove the following trigonometric identities.

`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`


Prove the following trigonometric identities.

`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`


Prove the following identities:

`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`


Prove that:

`sqrt(sec^2A + cosec^2A) = tanA + cotA`


If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.


Write the value of `(1 + cot^2 theta ) sin^2 theta`. 


Write the value of`(tan^2 theta  - sec^2 theta)/(cot^2 theta - cosec^2 theta)`


Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:

sin θ × cosec θ = ______


Simplify 

sin A `[[sinA   -cosA],["cos A"  " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`


Prove the following identity :

secA(1 - sinA)(secA + tanA) = 1


Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A


Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tanθ + cotθ. 


Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`


Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ)  +  cos2 θ.


Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`


Choose the correct alternative:

sec 60° = ?


Prove that

sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`


Prove that

`(cot "A" + "cosec  A" - 1)/(cot"A" - "cosec  A" + 1) = (1 + cos "A")/"sin A"`


If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×