Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`
उत्तर
In the given question, we need to prove `(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`
Here, we will first solve the LHS.
Now using `tan theta = sin theta/cos theta` and `cot theta = cos theta/sin theta` we get
`tan^2 A/(1 + tan^2 A) + cot^2 A/(1 + cot^2 A) = ((sin^2 A/cos^2 A))/((1 + sin^2 A/cos^2 A)) + ((cos^2 A/sin^2 A))/((1 + cos^2 A/sin^2 A))`
`= ((sin^2 A/cos^2 A))/(((cos^2 + sin^2 A)/cos^2 A)) + ((cos^2 A/sin^2 A))/(((sin^2 A + cos^2 A)/sin^2 A))`
`= ((sin^2 A/cos^2 A))/((1/cos^2 A)) + ((cos^2 A/sin^2 A))/((1/(sin^2 A)))` (using `sin^2 theta + cos^2 theta = 1`)
On further solving by taking the reciprocal of the denominator, we get,
`(sin^2 A/cos^2 A)/(1/cos^2 A) + (cos^2 A/sin^2 A)/(1/sin^2 A) = ((sin^2 A)/(cos^2 A)) (cos^2 A/1) + (cos^2 A/sin^2 A)(sin^2 A/1)`
`= sin^2 A + cos^2 A` (Using `sin^2 theta + cos^2 theta = 1`)
= 1
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`
`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`
`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`
Show that `sqrt((1-cos A)/(1 + cos A)) = sinA/(1 + cosA)`
Prove the following trigonometric identities.
`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = tan theta`
Prove the following trigonometric identities.
`(cosec A)/(cosec A - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
Prove that:
(sec A − tan A)2 (1 + sin A) = (1 − sin A)
What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?
Write True' or False' and justify your answer the following :
The value of the expression \[\sin {80}^° - \cos {80}^°\]
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
(sec A + tan A) (1 − sin A) = ______.
Prove the following identities:
`(sec"A"-1)/(sec"A"+1)=(sin"A"/(1+cos"A"))^2`
Prove the following identity :
`(cosecθ)/(tanθ + cotθ) = cosθ`
Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle.
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2 = 1`
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1
Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)
tan θ × `sqrt(1 - sin^2 θ)` is equal to:
Prove the following identity:
(sin2θ – 1)(tan2θ + 1) + 1 = 0