हिंदी

Verify that the Points A(–2, 2), B(2, 2) and C(2, 7) Are the Vertices of a Right-angled Triangle. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle. 

योग

उत्तर

In a right angles triangle ABC, right-angled at B, according to the Pythagoras theorem

AB2 + BC2 = AC2

According to the distance formula, the distance 'd' between two points (a,b) and (c,d) is given by

`d = root(2)((a - c)^2 + (b - d)^2`....(1)

For the given points Distance between P and Q is

PQ = `sqrt((-2-2)^2 + (2 - 2)^2) = sqrt(16)`

QR = `sqrt((2-2)^2 + (7 - 2)^2) = sqrt(25)`

PR = `sqrt((-2-2)^2 + (2 - 7)^2) = sqrt(16 + 25) = sqrt(41)`

PQ2 = 16

QR2 = 25

PR2 = 41

As PQ2 + QR2 = PR2

Hence the given points form a right-angled triangle.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2018-2019 (July) Set 1

संबंधित प्रश्न

Prove the following trigonometric identities.

`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`


Prove the following trigonometric identities.

sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B


If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2


Prove the following identities:

`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`


Prove the following identities:

`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`


If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2


cosec4θ − cosec2θ = cot4θ + cot2θ


`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`


If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`


Write the value of `(1 + cot^2 theta ) sin^2 theta`. 


If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`


If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]


Prove the following identity :

sinθcotθ + sinθcosecθ = 1 + cosθ  


Prove the following identity : 

`(cosecθ)/(tanθ + cotθ) = cosθ`


Prove the following identity :

`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`


Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.


Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0


Given that sin θ = `a/b`, then cos θ is equal to ______.


If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.


Prove the following:

`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×