Advertisements
Advertisements
प्रश्न
Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle.
उत्तर
In a right angles triangle ABC, right-angled at B, according to the Pythagoras theorem
AB2 + BC2 = AC2
According to the distance formula, the distance 'd' between two points (a,b) and (c,d) is given by
`d = root(2)((a - c)^2 + (b - d)^2`....(1)
For the given points Distance between P and Q is
PQ = `sqrt((-2-2)^2 + (2 - 2)^2) = sqrt(16)`
QR = `sqrt((2-2)^2 + (7 - 2)^2) = sqrt(25)`
PR = `sqrt((-2-2)^2 + (2 - 7)^2) = sqrt(16 + 25) = sqrt(41)`
PQ2 = 16
QR2 = 25
PR2 = 41
As PQ2 + QR2 = PR2
Hence the given points form a right-angled triangle.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`
Prove the following trigonometric identities.
sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2
Prove the following identities:
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
cosec4θ − cosec2θ = cot4θ + cot2θ
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`
Write the value of `(1 + cot^2 theta ) sin^2 theta`.
If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]
Prove the following identity :
sinθcotθ + sinθcosecθ = 1 + cosθ
Prove the following identity :
`(cosecθ)/(tanθ + cotθ) = cosθ`
Prove the following identity :
`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`
Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.
Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0
Given that sin θ = `a/b`, then cos θ is equal to ______.
If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.
Prove the following:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A