Advertisements
Advertisements
प्रश्न
Prove that:
उत्तर
\[\sqrt{\frac{1 - \sin\theta}{1 + \sin\theta}}\]
\[ = \sqrt{\frac{1 - \sin\theta}{1 + \sin\theta} \times \frac{1 - \sin\theta}{1 - \sin\theta}}\]
\[ = \sqrt{\frac{\left( 1 - \sin\theta \right)^2}{1 - \sin^2 \theta}}\]
\[ = \sqrt{\frac{\left( 1 - \sin\theta \right)^2}{\cos^2 \theta}} \left( \cos^2 \theta + \sin^2 \theta = 1 \right)\]
\[= \frac{1 - \sin\theta}{\cos\theta}\]
\[ = \frac{1}{\cos\theta} - \frac{\sin\theta}{\cos\theta}\]
\[ = \sec\theta - \tan\theta\]
APPEARS IN
संबंधित प्रश्न
If \[\tan \theta = \frac{3}{4}\], find the values of secθ and cosθ
If tanθ = 1 then, find the value of
`(sinθ + cosθ)/(secθ + cosecθ)`
Prove that:
cos2θ (1 + tan2θ)
Prove that:
(secθ - cosθ)(cotθ + tanθ) = tanθ.secθ.
Choose the correct alternative answer for the following question.
sin \[\theta\] cosec \[\theta\]= ?
Choose the correct alternative answer for the following question.
cosec 45° =?
Prove the following.
secθ (1 – sinθ) (secθ + tanθ) = 1
Prove the following.
(secθ + tanθ) (1 – sinθ) = cosθ
Prove the following.
sec2θ + cosec2θ = sec2θ × cosec2θ
Prove the following.
cot2θ – tan2θ = cosec2θ – sec2θ
Prove the following.
\[\frac{\tan\theta}{\sec\theta + 1} = \frac{\sec\theta - 1}{\tan\theta}\]
Prove the following.
Choose the correct alternative:
sinθ × cosecθ =?
Show that:
`sqrt((1-cos"A")/(1+cos"A"))=cos"ecA - cotA"`