Advertisements
Advertisements
प्रश्न
Show that `sqrt((1-cos A)/(1 + cos A)) = sinA/(1 + cosA)`
उत्तर
`L.H.S = sqrt((1-cosA)/(1 + cosA))`
`= sqrt(((1-cosA)(1 + cosA))/((1+ cosA)(1 + cosA)))`
`= sqrt((1 - cos^2A)/(1 + cosA)^2`
`= sqrt((sin^2A)/(1+cosA)^2)`
`= sinA/(1 + cosA)`
= R.H.S
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`
Prove the following trigonometric identities.
`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`
Prove the following identities:
`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`
`sec theta (1- sin theta )( sec theta + tan theta )=1`
If tan A =` 5/12` , find the value of (sin A+ cos A) sec A.
Write the value of sin A cos (90° − A) + cos A sin (90° − A).
If cos \[9\theta\] = sin \[\theta\] and \[9\theta\] < 900 , then the value of tan \[6 \theta\] is
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
Prove the following identities.
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`
Choose the correct alternative:
sec 60° = ?