English

Prove the Following Trigonometric Identities. (Tan^2 A)/(1 + Tan^2 A) + (Cot^2 A)/(1 + Cot^2 A) = 1 - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities.

`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`

Solution

In the given question, we need to prove `(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`

Here, we will first solve the LHS.

Now using `tan theta = sin theta/cos theta` and `cot theta = cos theta/sin theta` we get

`tan^2 A/(1 + tan^2 A) + cot^2 A/(1 + cot^2 A) = ((sin^2 A/cos^2 A))/((1 + sin^2 A/cos^2 A)) + ((cos^2 A/sin^2 A))/((1 + cos^2 A/sin^2 A))`

`= ((sin^2 A/cos^2 A))/(((cos^2 + sin^2 A)/cos^2 A)) + ((cos^2 A/sin^2 A))/(((sin^2 A + cos^2 A)/sin^2 A))`

`= ((sin^2 A/cos^2 A))/((1/cos^2 A)) + ((cos^2 A/sin^2 A))/((1/(sin^2  A)))`    (using `sin^2 theta + cos^2 theta = 1`)

On further solving by taking the reciprocal of the denominator, we get,

`(sin^2 A/cos^2 A)/(1/cos^2 A) + (cos^2 A/sin^2 A)/(1/sin^2 A) = ((sin^2 A)/(cos^2 A)) (cos^2 A/1) + (cos^2 A/sin^2 A)(sin^2 A/1)`

`= sin^2 A + cos^2 A`        (Using `sin^2 theta + cos^2 theta = 1`)

= 1

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 45]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 45 | Page 45

RELATED QUESTIONS

Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.


Prove the following trigonometric identities:

`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `


Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2


Prove the following trigonometric identities.

tan2θ cos2θ = 1 − cos2θ


Prove the following trigonometric identities.

`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`


If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2


Prove the following identities:

(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A


Prove the following identities:

`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`


Prove that:

`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`


Prove that:

`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`


If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.


Write the value of `(1 + cot^2 theta ) sin^2 theta`. 


If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`


 Write True' or False' and justify your answer the following :

The value of the expression \[\sin {80}^° - \cos {80}^°\] 


Without using trigonometric identity , show that :

`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`


If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.


Choose the correct alternative:

sin θ = `1/2`, then θ = ?


If tan θ = `7/24`, then to find value of cos θ complete the activity given below.

Activity:

sec2θ = 1 + `square`    ......[Fundamental tri. identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square/576`

sec2θ = `square/576`

sec θ = `square` 

cos θ = `square`     .......`[cos theta = 1/sectheta]`


If 5 tan β = 4, then `(5  sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.


Factorize: sin3θ + cos3θ

Hence, prove the following identity:

`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×