English

Prove that: cos3A+sin3AcosA+sinA+cos3A-sin3AcosA-sinA=2 - Mathematics

Advertisements
Advertisements

Question

Prove that:

`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`

Sum

Solution

L.H.S. = `(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA)`

= `((cos^3A + sin^3A)(cosA - sinA) + (cos^3A - sin^3A)(cosA + sinA))/(cos^2A - sin^2A)`

= `(cos^4A - cos^3AsinA + sin^3AcosA - sin^4A + cos^4A + cos^3AsinA - sin^3AcosA - sin^4A)/(cos^2A - sin^2A)`

= `(2(cos^4A - sin^4A))/(cos^2A - sin^2A)`

= `(2(cos^2A + sin^2A)2(cos^2A - sin^2A))/(cos^2A - sin^2A)`

 = 2(cos2 A + sin2 A)

= 2 = R.H.S.    ...(∵ cos2 A + sin2 A = 1)

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Trigonometrical Identities - Exercise 21 (B) [Page 327]

APPEARS IN

Selina Mathematics [English] Class 10 ICSE
Chapter 21 Trigonometrical Identities
Exercise 21 (B) | Q 1.2 | Page 327
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×