Advertisements
Advertisements
Question
Prove that:
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
Solution
L.H.S. = `(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA)`
= `((cos^3A + sin^3A)(cosA - sinA) + (cos^3A - sin^3A)(cosA + sinA))/(cos^2A - sin^2A)`
= `(cos^4A - cos^3AsinA + sin^3AcosA - sin^4A + cos^4A + cos^3AsinA - sin^3AcosA - sin^4A)/(cos^2A - sin^2A)`
= `(2(cos^4A - sin^4A))/(cos^2A - sin^2A)`
= `(2(cos^2A + sin^2A)2(cos^2A - sin^2A))/(cos^2A - sin^2A)`
= 2(cos2 A + sin2 A)
= 2 = R.H.S. ...(∵ cos2 A + sin2 A = 1)
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`
`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`
`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
`cot theta/((cosec theta + 1) )+ ((cosec theta +1 ))/ cot theta = 2 sec theta `
`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.
Prove that 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B
(1 + sin A)(1 – sin A) is equal to ______.