Advertisements
Advertisements
प्रश्न
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
उत्तर
LHS = `sqrt(((1 + cos A)(1 + cos A))/((1 - cos A)(1 + cos A)))`
= `sqrt((1 + cos A)^2/(1 - cos^2 A))`
= `sqrt((1 + cos^2 A + 2cos A)/sin^2 A`
= `(1 + cos A)/sin A`
RHS = `(tan A + sin A)/(tan A sin A)`
= `(sin A(1/cos A + 1))/((sin A/cos A xx sin A)`
= `(sin A( 1 + cos A))/cos A xx cos A/(sin A sin A)`
= `(1 + cos A)/sin A`
Hence proved.
APPEARS IN
संबंधित प्रश्न
If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`
Prove the following trigonometric identities.
`(cos^2 theta)/sin theta - cosec theta + sin theta = 0`
Prove the following trigonometric identities.
`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ.
The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to
Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`
Prove that
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A
(1 – cos2 A) is equal to ______.