Advertisements
Advertisements
प्रश्न
Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`
उत्तर
LHS = `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ))`
LHS = `(sin^2 θ/cos θ). (cos^2 θ/sin θ)`
LHS = sin θ. cos θ
RHS = `1/(tan θ + cot θ)`
RHS = `1/((sin^2 θ + cos^2 θ)/(sin θ. cos θ))`
RHS = `(sin θ. cos θ)/(sin^2 θ + cos^2 θ)`
RHS = sin θ. cos θ
LHS = RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`
[Hint: Write the expression in terms of sinθ and cosθ]
Prove the following identities:
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
`cot^2 theta - 1/(sin^2 theta ) = -1`a
`cos^2 theta + 1/((1+ cot^2 theta )) =1`
What is the value of (1 + cot2 θ) sin2 θ?
Prove that:
`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`
The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.
If sin A = `1/2`, then the value of sec A is ______.
Prove the following trigonometry identity:
(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ