Advertisements
Advertisements
प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`
[Hint: Write the expression in terms of sinθ and cosθ]
उत्तर
L.H.S
= `(tantheta)/(1-cottheta) + (cottheta)/(1-tantheta) `
= `(sintheta/costheta)/(1-costheta/sintheta) + (costheta/sintheta)/(1-sintheta/costheta)`
= `(sintheta/costheta)/((sintheta-costheta)/(sintheta))+ (costheta/sintheta)/((costheta-sintheta)/costheta)`
= `(sin^2theta)/(costheta(sintheta-costheta)) - (cos^2theta)/(sintheta(sintheta-costheta))`
= `1/(sintheta - costheta)[(sin^2theta)/costheta - cos^2theta/sintheta]`
= `(1/(sintheta-costheta))[(sin^3theta-cos^3theta)/(sinthetacostheta)]`
= `(1/(sintheta-costheta))[((sintheta-costheta)(sin^2theta+cos^2theta+sinthetacostheta))/(sinthetacostheta)]`
= `((1+sinthetacostheta))/((sinthetacostheta))`
= sec θ cosec θ + 1
= R.H.S
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`
`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`
`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`
Prove the following identities:
`(i) 2 (sin^6 θ + cos^6 θ) –3(sin^4 θ + cos^4 θ) + 1 = 0`
`(ii) (sin^8 θ – cos^8 θ) = (sin^2 θ – cos^2 θ) (1 – 2sin^2 θ cos^2 θ)`
Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`
Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.
Prove the following trigonometric identities.
`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`
Prove the following trigonometric identities.
`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2
Prove the following identities:
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove that:
`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`
Prove the following identities:
`cosecA - cotA = sinA/(1 + cosA)`
`cos^2 theta + 1/((1+ cot^2 theta )) =1`
Show that none of the following is an identity:
`tan^2 theta + sin theta = cos^2 theta`
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`
If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`
Simplify : 2 sin30 + 3 tan45.
If cosec θ − cot θ = α, write the value of cosec θ + cot α.
Write the value of cosec2 (90° − θ) − tan2 θ.
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
Prove the following identity :
`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
Choose the correct alternative:
1 + tan2 θ = ?
Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.
If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
Prove the following identities.
`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2
If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1
Prove that `"cosec" θ xx sqrt(1 - cos^2theta)` = 1
If 1 – cos2θ = `1/4`, then θ = ?
(sec θ + tan θ) . (sec θ – tan θ) = ?
If tan θ = `7/24`, then to find value of cos θ complete the activity given below.
Activity:
sec2θ = 1 + `square` ......[Fundamental tri. identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A