हिंदी

Tan θ Sec θ − 1 + Tan θ Sec θ + 1 is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to 

विकल्प

  • 2 tan θ

  •  2 sec θ

  •  2 cosec θ

  •  2 tan θ sec θ

MCQ

उत्तर

The given expression is  `tan θ /(secθ-1)+tan θ/(sec θ+1)`

=` (tan θ (sec θ+1)+tan θ(secθ-1))/((secθ-1)(secθ+1))`

= `(tan θ sec θ+tanθ+tan θ secθ-tan θ)/(sec^2θ-1)`

=`( 2tanθ secθ)/tan^2θ`

=`(2secθ)/tan θ` 

= `(2 1/cos θ)/(sinθ/cos θ)` 

=`2 1/ sinθ`

= `2 cosec θ`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.4 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.4 | Q 10 | पृष्ठ ५७

संबंधित प्रश्न

Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.


If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2

 


Prove that ` \frac{\sin \theta -\cos \theta +1}{\sin\theta +\cos \theta -1}=\frac{1}{\sec \theta -\tan \theta }` using the identity sec2 θ = 1 + tan2 θ.


Prove the following trigonometric identities.

`(cos^2 theta)/sin theta - cosec theta +  sin theta  = 0`


Prove the following identities:

`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`


` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`


Show that none of the following is an identity: 

`sin^2 theta + sin  theta =2`


If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`


If x =  a sin θ and y = bcos θ , write the value of`(b^2 x^2 + a^2 y^2)`


Simplify : 2 sin30 + 3 tan45.


Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.


If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ? 


sec4 A − sec2 A is equal to


\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to


Prove that: 
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1


Prove the following identity : 

`cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA`


Prove the following identity : 

`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`


Find the value of `θ(0^circ < θ < 90^circ)` if : 

`cos 63^circ sec(90^circ - θ) = 1`


Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`


If sin A = `1/2`, then the value of sec A is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×