Advertisements
Advertisements
प्रश्न
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
विकल्प
2 tan θ
2 sec θ
2 cosec θ
2 tan θ sec θ
उत्तर
The given expression is `tan θ /(secθ-1)+tan θ/(sec θ+1)`
=` (tan θ (sec θ+1)+tan θ(secθ-1))/((secθ-1)(secθ+1))`
= `(tan θ sec θ+tanθ+tan θ secθ-tan θ)/(sec^2θ-1)`
=`( 2tanθ secθ)/tan^2θ`
=`(2secθ)/tan θ`
= `(2 1/cos θ)/(sinθ/cos θ)`
=`2 1/ sinθ`
= `2 cosec θ`
APPEARS IN
संबंधित प्रश्न
Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.
If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2
Prove that ` \frac{\sin \theta -\cos \theta +1}{\sin\theta +\cos \theta -1}=\frac{1}{\sec \theta -\tan \theta }` using the identity sec2 θ = 1 + tan2 θ.
Prove the following trigonometric identities.
`(cos^2 theta)/sin theta - cosec theta + sin theta = 0`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`
` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`
Show that none of the following is an identity:
`sin^2 theta + sin theta =2`
If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`
If x = a sin θ and y = bcos θ , write the value of`(b^2 x^2 + a^2 y^2)`
Simplify : 2 sin30 + 3 tan45.
Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ?
sec4 A − sec2 A is equal to
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
Prove that:
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1
Prove the following identity :
`cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA`
Prove the following identity :
`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`cos 63^circ sec(90^circ - θ) = 1`
Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`
If sin A = `1/2`, then the value of sec A is ______.