Advertisements
Advertisements
प्रश्न
Show that none of the following is an identity:
`sin^2 theta + sin theta =2`
उत्तर
`sin^2 theta + sin theta =2`
LHS = `sin^2 theta + sin theta`
=`1- cos^2 theta + sin theta `
=`1- ( cos ^2 theta - sin theta )`
Since LHS ≠ RHS, this is not an identity.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) 2 (sin^6 θ + cos^6 θ) –3(sin^4 θ + cos^4 θ) + 1 = 0`
`(ii) (sin^8 θ – cos^8 θ) = (sin^2 θ – cos^2 θ) (1 – 2sin^2 θ cos^2 θ)`
Prove the following trigonometric identities.
`tan theta + 1/tan theta = sec theta cosec theta`
Prove the following trigonometric identities.
`cos A/(1 - tan A) + sin A/(1 - cot A) = sin A + cos A`
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
Prove the following trigonometric identities.
if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`
Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`
If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`
Write the value of sin A cos (90° − A) + cos A sin (90° − A).
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
Prove the following identity :
`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
Choose the correct alternative:
sec 60° = ?
`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?
Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`
If cosec A – sin A = p and sec A – cos A = q, then prove that `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1
If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.