Advertisements
Advertisements
प्रश्न
Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`
उत्तर
`sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta))`
`= sqrt((1 + cos theta)/(1 - cos theta) xx (1 + cos theta)/(1 + cos theta)) + sqrt((1 -cos theta)/(1 + cos theta) xx (1 - cos theta)/(1 - cos theta))`
`= sqrt((1 + cos theta)^2/(1 - cos^2 theta)) + sqrt((1 - cos theta)^2/(1 - cos^2 theta))`
`= sqrt((1 + cos theta)^2/(sin^2 theta)) + sqrt((1 -cos theta)^2/sin^2 theta)`
`= (1 + cos theta)/sin theta + (1 - cos theta)/sin theta`
`= 2/sin theta = 2cosec theta`
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`
`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`
`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`
If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2
Prove the following trigonometric identities.
(1 + cot A − cosec A) (1 + tan A + sec A) = 2
Prove the following identities:
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove the following identities:
`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
`cos^2 theta + 1/((1+ cot^2 theta )) =1`
`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`
`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `
Prove the following identity :
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq
Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ
Prove the following identities.
`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
Choose the correct alternative:
1 + cot2θ = ?
If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3
If cos A + cos2A = 1, then sin2A + sin4 A = ?
Prove the following:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α
tan θ × `sqrt(1 - sin^2 θ)` is equal to:
Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.