हिंदी

Prove that Sqrt((1 + Cos Theta)/(1 - Cos Theta)) + Sqrt((1 - Cos Theta)/(1 + Cos Theta)) = 2 Cosec Theta - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`

उत्तर

`sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta))`

`= sqrt((1 + cos theta)/(1 - cos theta) xx (1 + cos theta)/(1 + cos theta)) + sqrt((1 -cos theta)/(1 + cos theta) xx (1 - cos theta)/(1 - cos theta))`

`= sqrt((1 + cos theta)^2/(1 - cos^2 theta)) + sqrt((1 - cos theta)^2/(1 - cos^2 theta))`

`= sqrt((1 + cos theta)^2/(sin^2 theta)) + sqrt((1 -cos theta)^2/sin^2 theta)`

`= (1 + cos theta)/sin theta + (1 - cos theta)/sin theta`

`= 2/sin theta = 2cosec theta`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 83.3 | पृष्ठ ४७

संबंधित प्रश्न

Prove the following identities:

`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`

`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`

`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`


If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2

 


Prove the following trigonometric identities.

(1 + cot A − cosec A) (1 + tan A + sec A) = 2


Prove the following identities:

`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`


Prove the following identities:

`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`


Prove the following identities:

`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`


`cos^2 theta + 1/((1+ cot^2 theta )) =1`

     


`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`


`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `


Prove the following identity : 

`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq


Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`


Prove the following identities.

`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ


Prove the following identities.

`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`


Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ


Choose the correct alternative:

1 + cot2θ = ? 


If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3


If cos A + cos2A = 1, then sin2A + sin4 A = ?


Prove the following:

`1 + (cot^2 alpha)/(1 + "cosec"  alpha)` = cosec α


tan θ × `sqrt(1 - sin^2 θ)` is equal to:


Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×