Advertisements
Advertisements
प्रश्न
Prove the following identities.
`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`
उत्तर
L.H.S = `(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`
= `((sin "A" - sin "B")(sin "A" + sin "B") + (cos "A" - cos "B")(cos"A" + cos "B"))/((cos"A" + cos "B")(sin"A" + sin "B"))`
= `(sin^2"A" - sin^2"B" + cos^2"A" - cos^2"B")/((cos"A" + cos"B")(sin"A" + sin"B"))`
= `((sin^2"A" + cos^2"A") - (sin^2"B" + cos^2"B"))/((cos"A" + cos"B")(sin"A" + sin"B"))`
= `(1 - 1)/((cos"A" + cos"B")(sin"A" + sin"B")) = 0/((cos"A" + cos"B")(sin"A" + sin"B"))`
= 0
L.H.S = R.H.S ⇒ `(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")` = 0
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`
[Hint: Write the expression in terms of sinθ and cosθ]
Prove the following trigonometric identities.
sin2 A cot2 A + cos2 A tan2 A = 1
Prove the following identities:
(sec A – cos A) (sec A + cos A) = sin2 A + tan2 A
`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
Prove the following identity :
`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`
Prove the following identity :
`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`
Choose the correct alternative:
`(1 + cot^2"A")/(1 + tan^2"A")` = ?