Advertisements
Advertisements
प्रश्न
Prove the following identities:
(sec A – cos A) (sec A + cos A) = sin2 A + tan2 A
उत्तर
L.H.S. = (sec A – cos A) (sec A + cos A)
= sec2 A – cos2 A
= (1 + tan2 A) – (1 – sin2 A)
= sin2 A + tan2 A
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
Prove the following identity :
`sqrt(cosec^2q - 1) = "cosq cosecq"`
Prove the following identity :
`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`
For ΔABC , prove that :
`tan ((B + C)/2) = cot "A/2`
Prove that:
`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)`
Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.
Choose the correct alternative:
sin θ = `1/2`, then θ = ?
Choose the correct alternative:
cos 45° = ?
Given that sin θ = `a/b`, then cos θ is equal to ______.