Advertisements
Advertisements
प्रश्न
Prove that:
`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)`
उत्तर
L.H.S. = `(cot A - 1)/(2 - sec^2A)`
= `(((1 - tan A))/tan A)/(1 + 1 - sec^2A)`
= `(((1 - tan A))/tan A)/(1 - tan^2A)`
= `(((1 - tan A))/(tan A))/((1 + tan A)(1 - tan A))`
= `(1/tan A)/(1 + tan A)`
= `cot A/(1 + tan A)` = R.H.S.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
Prove the following trigonometric identities
`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) = (1 + sin^2 theta)/(1 - sin^2 theta)`
Prove the following trigonometric identities.
`(1 + cos A)/sin^2 A = 1/(1 - cos A)`
Prove the following identities:
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
`(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) = 2/((sin^2 theta - cos ^2 theta)) = 2/((2 sin^2 theta -1))`
Prove the following identity :
`1/(tanA + cotA) = sinAcosA`
Prove that `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`
Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`