Advertisements
Advertisements
प्रश्न
`(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) = 2/((sin^2 theta - cos ^2 theta)) = 2/((2 sin^2 theta -1))`
उत्तर
We have , `(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) `
=`((sin theta + cos theta )^2 + (sin theta - cos theta)^2) /((sin theta - cos theta )(sin theta + cos theta))`
=`(sin^2 theta + cos ^2 theta + 2 sin theta cos theta + sin^2 theta + cos^2 theta -2 sin theta cos theta)/(sin^2 theta - cos ^2 theta)`
=`(1+1)/(sin^2 theta - cos^2 theta)`
=`2/(sin^2 theta - cos^2 theta)`
Again ,` 2/(sin^2 theta - cos^2 theta)`
=`2/(sin^2 theta -(1-sin^2 theta))`
=`2/(2 sin ^2 theta -1)`
APPEARS IN
संबंधित प्रश्न
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
As observed from the top of an 80 m tall lighthouse, the angles of depression of two ships on the same side of the lighthouse of the horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest meter.
Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.
Prove the following trigonometric identities.
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
Prove the following trigonometric identities.
(1 + cot A − cosec A) (1 + tan A + sec A) = 2
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`
`cot theta/((cosec theta + 1) )+ ((cosec theta +1 ))/ cot theta = 2 sec theta `
`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`
If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`
sec4 A − sec2 A is equal to
Prove the following identity :
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Prove the following identity :
`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`
Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.
Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A
If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.
Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`
If cosA + cos2A = 1, then sin2A + sin4A = 1.