Advertisements
Advertisements
प्रश्न
Prove the following identity :
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
उत्तर
LHS = `1/(sinA + cosA) + 1/(sinA - cosA)`
= `(sinA - cosA + sinA + cosA)/(sin^2A - cos^2A)`
= `(2sinA)/(1 - cos^2A - cos^2A) = (2sinA)/(1 - 2cos^2A)`
APPEARS IN
संबंधित प्रश्न
Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`
Prove the following trigonometric identities
`cos theta/(1 - sin theta) = (1 + sin theta)/cos theta`
Prove the following identities:
cosec A(1 + cos A) (cosec A – cot A) = 1
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to
Prove the following identity :
( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ)
Prove the following identity :
(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`
Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1