Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
उत्तर
LHS = `(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA)`
= `((sinA + cosA)^2 + (sinA - cosA)^2)/((sinA + cosA)(sinA - cosA))`
= `(sin^2A + cos^2A + 2sinA cosA + sin^2A + cos^2A - 2sinA cosA)/(sin^2A - cos^2A)`
= `(2(sin^2A + cos^2A))/(sin^2A - cos^2A)`
= `2/(sin^2A - cos^2A)` [`sin^2A + cos^2A = 1`]
= `2/(sin^2A - cos^2A) = 2/(sin^2A - (1 - sin^2A))`
⇒ `2/(2sin^2A - 1)`
APPEARS IN
संबंधित प्रश्न
`(sec^2 theta -1)(cosec^2 theta - 1)=1`
If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9.
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
Prove the following identity :
`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`
Without using trigonometric table , evaluate :
`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`
For ΔABC , prove that :
`tan ((B + C)/2) = cot "A/2`
Find the value of sin 30° + cos 60°.
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.