Advertisements
Advertisements
प्रश्न
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
उत्तर
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
= sin2 34° + [sin2 (90° – 34°)]2 + 2 tan 18° tan (90° – 18°) – cot2 30°
= `sin^2 34^circ + cos^2 34^circ + 2 tan 18^circ cot 18^circ - (sqrt(3))^2`
= `1 + 2 tan 18^circ xx 1/(tan 18^circ) - 3` ...[∵ sin2θ + cos2θ = 1]
= 1 + 2 – 3
= 3 – 3
= 0
APPEARS IN
संबंधित प्रश्न
Prove that:
sec2θ + cosec2θ = sec2θ x cosec2θ
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
Prove the following trigonometric identities.
`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`
cosec4θ − cosec2θ = cot4θ + cot2θ
` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.
Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1