Advertisements
Advertisements
प्रश्न
If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3
उत्तर
3 sin A + 5 cos A = 5 ....[Given]
∴ (3 sin A + 5 cos A)2 = 25 ......[Squaring both the sides]
∴ 9 sin2A + 30 sin A cos A + 25 cos2A = 25
∴ 9(1 – cos2A) + 30 sin A cos A + 25(1 – sin2A) = 25
∴ 9 – 9 cos2A + 30 sin A cos A + 25 – 25 sin2A = 25
∴ 25 sin2A – 30 sin A cos A + 9 cos2A = 9
∴ (5 sin A – 3 cos A)2 = 9 ......[∵ a2 – 2ab + b2 = (a – b)2]
∴ 5 sin A – 3 cos A = ± 3 .....[Taking square root of both sides]
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`
`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`
`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`
Evaluate without using trigonometric tables:
`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`
Prove the following trigonometric identities.
`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`
If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
Prove the following identity :
sinθcotθ + sinθcosecθ = 1 + cosθ
Prove the following identity :
`cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA`
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`tan35^circ cot(90^circ - θ) = 1`
`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A
If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.
`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?
If cos A + cos2A = 1, then sin2A + sin4 A = ?
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.
Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1
Show that: `tan "A"/(1 + tan^2 "A")^2 + cot "A"/(1 + cot^2 "A")^2 = sin"A" xx cos"A"`
If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.