हिंदी

Prove the Following Trigonometric Identities. `Tan Theta - Cot Theta = (2 Sin^2 Theta - 1)/(Sin Theta Cos Theta)` - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`

उत्तर

 We have to prove  `tan theta - cot theta = (2 sin^2 theta - `1)/(sin theta cos theta)`

We know that. `sin^2 theta + cos^2 theta - 1`

So,

`tan theta - cot theta = sin theta/cos theta -  cos theta/sin theta`

`= (sin^2 theta - cos^2 theta)/(sin theta cos theta)`

`= (sin^2 theta -  (1 - sin^2 theta))/(sin theta cos theta)`

`= (sin^2 theta - (1 - sin^2 theta))/(sin theta cos theta)`

`= (2 sin^2 theta - 1)/(sin theta cos theta)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 23.2 | पृष्ठ ४४

संबंधित प्रश्न

If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1


Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`


Evaluate without using trigonometric tables:

`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`


Prove the following trigonometric identities

`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) =  (1 + sin^2 theta)/(1 - sin^2 theta)`


If cos θ + cot θ = m and cosec θ – cot θ = n, prove that mn = 1


Prove the following identities:

`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`


Prove the following identities:

`(cosecA - 1)/(cosecA + 1) = (cosA/(1 + sinA))^2`


Prove the following identities:

`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`


If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.


Simplify : 2 sin30 + 3 tan45.


If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =


Evaluate:

sin2 34° + sin56° + 2 tan 18° tan 72° – cot30°


Find A if tan 2A = cot (A-24°).


If cosθ = `5/13`, then find sinθ. 


Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.


If tan α = n tan β, sin α = m sin β, prove that cos2 α  = `(m^2 - 1)/(n^2 - 1)`.


If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `±  sqrt("a"^2 + "b"^2 -"c"^2)`


Choose the correct alternative:

cos θ. sec θ = ?


Show that, cotθ + tanθ = cosecθ × secθ

Solution :

L.H.S. = cotθ + tanθ

= `cosθ/sinθ + sinθ/cosθ`

= `(square + square)/(sinθ xx cosθ)`

= `1/(sinθ xx cosθ)` ............... `square`

= `1/sinθ xx 1/square`

= cosecθ × secθ

L.H.S. = R.H.S

∴ cotθ + tanθ = cosecθ × secθ


`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×