Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`
उत्तर
We have to prove `tan theta - cot theta = (2 sin^2 theta - `1)/(sin theta cos theta)`
We know that. `sin^2 theta + cos^2 theta - 1`
So,
`tan theta - cot theta = sin theta/cos theta - cos theta/sin theta`
`= (sin^2 theta - cos^2 theta)/(sin theta cos theta)`
`= (sin^2 theta - (1 - sin^2 theta))/(sin theta cos theta)`
`= (sin^2 theta - (1 - sin^2 theta))/(sin theta cos theta)`
`= (2 sin^2 theta - 1)/(sin theta cos theta)`
APPEARS IN
संबंधित प्रश्न
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`
Evaluate without using trigonometric tables:
`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`
Prove the following trigonometric identities
`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) = (1 + sin^2 theta)/(1 - sin^2 theta)`
If cos θ + cot θ = m and cosec θ – cot θ = n, prove that mn = 1
Prove the following identities:
`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`
Prove the following identities:
`(cosecA - 1)/(cosecA + 1) = (cosA/(1 + sinA))^2`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`
If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.
Simplify : 2 sin30 + 3 tan45.
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
Find A if tan 2A = cot (A-24°).
If cosθ = `5/13`, then find sinθ.
Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.
If tan α = n tan β, sin α = m sin β, prove that cos2 α = `(m^2 - 1)/(n^2 - 1)`.
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
Choose the correct alternative:
cos θ. sec θ = ?
Show that, cotθ + tanθ = cosecθ × secθ
Solution :
L.H.S. = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
L.H.S. = R.H.S
∴ cotθ + tanθ = cosecθ × secθ
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.