Advertisements
Advertisements
प्रश्न
Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`
उत्तर
L.H.S = `sqrt((1-cosA)/(1+cos A))`
`= sqrt((1-cosA)/(1+cosA) xx (1 - cos A)/(1- cos A)) = sqrt((1- cosA)^2/(1-cos^2A))`
`=sqrt((1- cosA)^2/(sin^2A)) = (1-cosA)/sin A = 1/sin A - cos A/sin A = cosec A -cot A` = R.H.S
Hence prove.
APPEARS IN
संबंधित प्रश्न
If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.
Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Prove the following trigonometric identities
sec4 A(1 − sin4 A) − 2 tan2 A = 1
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
Prove the following identities:
(cos A + sin A)2 + (cos A – sin A)2 = 2
Prove the following identities:
sec2 A . cosec2 A = tan2 A + cot2 A + 2
Prove the following identities:
`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`
Prove the following identities:
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`
`(1-cos^2theta) sec^2 theta = tan^2 theta`
`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `
`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`
Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.
If x sin3θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ , then show that x2 + y2 = 1.
If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1
If x = a tan θ and y = b sec θ then
Prove that sec2θ − cos2θ = tan2θ + sin2θ
Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ