Advertisements
Advertisements
प्रश्न
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
उत्तर
`(sec theta - 1)/(sec theta + 1)`
`= (1/cos theta - 1)/(1/cos theta + 1)`
= `((1 - cos theta)/cos theta)/((1 + cos theta)/cos theta)`
`= (1 - cos theta)/(1 +cos theta)`
`= (1 - cos theta)/(1 + cos theta) xx (1 + cos theta)/(1+ cos theta)`
`= (1 - cos^2 theta)/(1 + cos theta)^2`
`= sin^2 theta/(1 + cos theta)^2`
`= [sin theta/(1 + cos theta)]^2`
=RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`
`Prove the following trigonometric identities.
`(sec A - tan A)^2 = (1 - sin A)/(1 + sin A)`
Prove the following identities:
sec2 A + cosec2 A = sec2 A . cosec2 A
Prove the following identities:
(cosec A + sin A) (cosec A – sin A) = cot2 A + cos2 A
Prove the following identities:
`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
`sec theta (1- sin theta )( sec theta + tan theta )=1`
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
Prove the following identity :
sinθcotθ + sinθcosecθ = 1 + cosθ
Prove the following identity :
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove the following identity :
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq
Prove that `1/("cosec" theta - cot theta)` = cosec θ + cot θ
Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`
Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1