Advertisements
Advertisements
प्रश्न
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
उत्तर
2 sin A − 1 = 0
`=> sin A = 1/2`
We know `sin 30^circ = 1/2`
So, A = 30°
L.H.S. = sin 3 A = sin 90° = 1
R.H.S. = 3 sin A – 4 sin3 A
= 3 sin 30° – 4 sin3 30°
= `3(1/2) - 4(1/2)^3`
= `3/2 - 1/2`
= 1
L.H.S. = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`((1 + tan^2A)cotA)/(cosec^2A) = tan A`
Prove that:
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
Prove that:
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1
Prove the following identity :
`cosecA + cotA = 1/(cosecA - cotA)`
For ΔABC , prove that :
`sin((A + B)/2) = cos"C/2`
Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ
Find the value of sin2θ + cos2θ
Solution:
In Δ ABC, ∠ABC = 90°, ∠C = θ°
AB2 + BC2 = `square` .....(Pythagoras theorem)
Divide both sides by AC2
`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`
∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`
But `"AB"/"AC" = square and "BC"/"AC" = square`
∴ `sin^2 theta + cos^2 theta = square`